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A gas-kinetic flux splitting method is developed for the ideal magnetohydrody-
namics (MHD) equations. The new scheme is based on the direct splitting of the
flux function of the MHD equations with the inclusion of “particle” collisions in the
transport process. Consequently, the artificial dissipation in the new scheme is greatly
reduced in comparison with the MHD flux vector splitting method. Numerical results
from the current scheme are favorable compared with those from the well-developed
Roe-type MHD solver. In the current paper, the general principle of splitting the
macroscopic flux function based on the gas-kinetic theory is presented. The flux
construction strategy may shed some light on the possible construction of accurate
and robust hybrid schemes for the compressible flow simulations.c© 1999 Academic Press
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1. INTRODUCTION

The development of numerical methods for the magnetohydrodynamics (MHD) equa-
tions has attracted much attention in recent years. Godunov-type schemes are considered
particularly useful here. On the basis of Roe’s method [24], Brio and Wu developed the first
flux difference splitting (FDS) scheme for MHD equations [3]. Aslan also followed the idea
of fluctuation approach to construct a second-order upwind MHD solver [1]. Zacharyet al.
applied an operator splitting technique and devised a high-order Godunov-type method
[35]. During the same period, multidimensional extension of MHD solvers was done by
Ryu et al. [25] and Tanaka [28]. On the basis of the nonlinear Riemann solver, Dai and
Woodward extended the PPM method there [6]. Powellet al. constructed an eight-wave
family eigensystem for the approximate Riemann solver [20, 21]. Most recently, based on
the Lax–Friedrichs flux splitting technique, Jiang and Wu applied a high-order WENO inter-
polation scheme to the MHD equations [12]. In order to increase the robustness and simplify
the complicated Roe-type MHD solver, Linde developed an adequate Riemann solver based
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on the HLL method for heliosphere applications [13]. A majority of the methods mentioned
above applied characteristic decomposition for the MHD waves, where the entropy, slow,
Alfven, and fast waves have to be considered in the evaluation of a single flux function. Be-
cause of the wave decomposition procedure, considerable work is required to evaluate and
justify the MHD eigensystem, where the nonstrict hyperbolicity causes additional difficulty
[18]. For the same reason, issues related to the direct extension of the flux vector splitting
(FVS) scheme to MHD equations have not been fully addressed. The search for robust, accu-
rate, and efficient MHD flow solvers is still one of the primary directions in MHD research.

For the Euler and Navier–Stokes equations, the development of gas-kinetic schemes has
also attracted attention [32]. A particular strength of kinetic schemes lies precisely where
Godunov-type FDS schemes often fail, such as with carbuncle phenomena, positivity, and
entropy conditions [8, 14, 23, 33]. However, like any other FVS method, the kinetic flux
vector splitting (KFVS) scheme is very diffusive and less accurate in comparison with the
Roe-type Riemann solver, especially for shear and contact waves. The diffusivity of the FVS
schemes, such as Steger–Warming, van Leer, and the KFVS [22, 27, 31] is mainly due to
the particle or wave free transport mechanism, which automatically sets the CFL time step
equal to particle collision time. Consequently, the artificial viscosity coefficient is always
proportional to the time step. Even though numerically the high-order FVS methods can
obtain crisp shock resolution by using a MUSCL-type reconstruction method, physically
it is impossible to develop a second-order FVS scheme for the inviscid Euler equations
without correcting the free transport mechanism. In order to reduce the diffusivity, particle
collisions have to be modeled and implemented in the gas evolution stage, such as that in
the BGK scheme [34].

The construction of a gas-kinetic FVS scheme for the MHD equations began with
Croisille et al. [5], where a MHD KFVS solver was obtained by simply extending the
KFVS flux function of the Euler equations. The above MHD KFVS scheme is very robust
and reliable, but overdiffusive, especially in the contact discontinuity regions [13]. Re-
cently, another interesting gas-kinetic MHD solver has been developed by Huba and Lyon
[9]. Different from the earlier approach, with this solver Huba and Lyon constructed two
equilibrium states and a transport equation to recover the MHD equations. An important
aspect of this method is that it provides a framework in which to incorporate additional
terms into the MHD equations, e.g., anisotropic ion stress tensor and anisotropic tempera-
ture distribution. However, the physical basis of the transport equation and the reliability of
the equilibrium states need to be further investigated. Since Huba and Lyon’s flux function
retains the FVS nature, large numerical dissipation is expected.

In this paper, we construct a new kinetic flux splitting method for MHD equations. Based
on the BGK-type formulation, the KFVS MHD solver of Croisilleet al.is generalized by in-
cluding particle collisions. As a result, the new scheme reduces numerical dissipation signif-
icantly and gives a more accurate representation of wave interactions. In Section 3, it will be
seen that the new scheme compares well with the Roe-type MHD solver [3, 21]. The flux con-
struction method presented in this paper splits the macroscopic flux function directly; there-
fore, it is very useful in the design of numerical methods for complicated hyperbolic systems.

2. GAS-KINETIC APPROACH TO MHD EQUATIONS

In the one-dimensional case, the MHD equation

qt + F(q)x = 0
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has the form [3]

ρt + (ρU )x = 0,

(ρU )t +
(
ρU2+ p∗ − B2

x

)
x
= 0,

(ρV)t + (ρU V − Bx By)x = 0,

(ρW)t + (ρU W − Bx Bz)x = 0, (2.1)

(By)t + (ByU − BxV)x = 0,

(Bz)t + (BzU − BxW)x = 0,

(ρε)t + ((ρε + p∗)U − Bx(BxU + ByV + BzW)x = 0,

wherep∗ is the total pressure

p∗ = p+ 1

2

(
B2

x + B2
y + B2

z

)
,

andp is the gas pressure. The total energy density includes kinetic, thermal, and magnetic
energy densities,

ρε = 1

2
ρ(U2+ V2+W2)+ ρe+ 1

2

(
B2

x + B2
y + B2

z

)
.

For an ideal gas in equilibrium, the thermal energy is related to pressure through the relation

ρe= p/(γ − 1).

Due to different physical origins, it should be emphasized that in order to properly split
the energy flux function, the splitting of internal energy fluxρeU and the splitting of work
done by the pressurepU should be different, although they are only different by a constant
1/(γ − 1) for the ideal gas.

Theoretically, it is very difficult to construct an equilibrium state and a single kinetic
transport equation to exactly recover the above ideal MHD equations. Basically, Faraday’s
law for the time evolution of magnetic field comes from the Maxwell equations and there
is no corresponding “particle” picture in representing the field evolution. However, instead
of constructing the equilibrium distribution for the flow and magnetic field, we can split the
MHD flux function directly on the macroscopic level using gas-kinetic theory.

2.1. Gas-Kinetic Flux Splitting Method

In gas-kinetic theory, the flux is associated with the particle motion across a cell interface.
For a 1D flow in thex-direction, the particle motion in this direction determines the flux
function. Other quantities, such as they-direction velocity, thermal energy, and magnetic
field, can be considered as passive scalars which are transported with thex-direction particle
velocity. Normally, particles are randomly distributed around the average velocity. From
statistical mechanics, the moving particles in thex-direction can be most favorably described
by the Maxwell–Boltzmann distribution function,

g = ρ
(
λ

π

)1/2

e−λ(u−U )2, (2.2)
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whereU is the average velocity andλ is the normalization factor of the distribution of
random velocity. Note thatλ is related to the temperature of the gas flow, i.e.,λ=m/2kT,
wherem is the molecular mass,k is the Boltzmann constant, andT is the temperature.

The transport of any flow quantity is basically due to the movement of particles. With the
above equilibrium stateg, we can split the particles into two groups. One group is moving
to the right withu> 0, and the other group is moving to the left withu< 0. Before splitting
the fluxes, let us first define the moments of the particle distribution function,

〈un〉 =
∫

un

(
λ

π

)1/2

e−λ(u−U )2 du,

where the integration limit of the particle velocityu can be(−∞,+∞), (−∞, 0), or
(0,+∞). There is a recursive relation for the moments〈un〉, which is

〈un+2〉 = U 〈un+1〉 + n+ 1

2λ
〈un〉.

In order to simplify the presentation, we define the notations

〈· · ·〉 =
∫ ∞
−∞
(· · ·)

(
λ

π

)1/2

e−λ(u−U )2 du,

〈· · ·〉+ =
∫ ∞

0
(· · ·)

(
λ

π

)1/2

e−λ(u−U )2 du,

and

〈· · ·〉− =
∫ 0

−∞
(· · ·)

(
λ

π

)1/2

e−λ(u−U )2 du.

For example, we have

〈u0〉+ = 1

2
erfc(−

√
λU ); 〈u0〉− = 1

2
erfc(
√
λU ),

where erfc is the complementary error function, and

〈u1〉+ = U 〈u0〉+ + 1

2

e−λU2

√
πλ
; 〈u1〉− = U 〈u0〉− − 1

2

e−λU2

√
πλ

.

Obviously, if the integration limit is(−∞,∞), the following relations hold:

〈u0〉 = 1, 〈u1〉 = U.

Depending on the particle moving direction, the total densityρ can be split into

ρ+ =
∫ ∞

0
g du

= ρ〈u0〉+
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and

ρ− =
∫ 0

−∞
g du

= ρ〈u0〉−.

Any macroscopic quantityZ without containing explicitly thex-component velocityU ,
such as the densityρ, y-, and z-direction momentumρV andρW, and magnetic field
Bx By, can be split similarly:

Z+ = Z〈u0〉+

and

Z− = Z〈u0〉−.
The above relations mean that the quantityZ is simply advected with the particle transport
in thex-direction.

Thex-direction momentumρU can be split into

(ρU )+ =
∫ ∞

0
ug du

= ρ〈u1〉+

and

(ρU )− =
∫ 0

−∞
ug du

= ρ〈u1〉−.

Similarly, any quantity containing theU term, such asBxU, ByU, ρU, ρVU, andρWU,
can be split as

(ZU)+ = Z〈u1〉+
and

(ZU)− = Z〈u1〉−.
For the magnetic field, the above splitting implies that the field is frozen into the particle
motion and transported with the fluid. Note thatZU does not includepU, and the splitting
of pU will be derived later.

The energy can be split into two terms(ρε)+ and(ρε)−, where

(ρε)+ =
∫ ∞

0

1

2
u2g du

= 1

2
〈u2〉+

= 1

2
ρU 〈u1〉+ + ρ

4λ
〈u0〉+

= 1

2
ρU 〈u1〉+ + ρe〈u0〉+,
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whereρe is the thermal energy of the specific distribution functiong in Eq. (2.2) with the
value ofρ/4λ. Similarly, we have

(ρε)− =
∫ 0

−∞

1

2
u2g du

= 1

2
〈u2〉−

= 1

2
ρU 〈u1〉− + ρ

4λ
〈u0〉−

= 1

2
ρU 〈u1〉− + ρe〈u0〉−.

The above equations imply that the kinetic energy1
2ρU2 can be split as

1

2
ρU2 =

(
1

2
ρU2

)+
+
(

1

2
ρU2

)−
= 1

2
ρU 〈u1〉+ + 1

2
ρU 〈u1〉−,

and the thermal energy can also be split as

ρe= (ρe)+ + (ρe)−

= ρe〈u0〉+ + ρe〈u0〉−.

In addition to the thermal energy, we can also use the above formulation to split the other
quantities without an explicit macroscopic velocity dependence, such as magnetic energy
in the MHD equations. For nonideal gases, the internal energy could be a complicated
function ofρ andT . The above formulation can still be used to split it in terms of〈u0〉+
and〈u0〉−. For example, due to the relation between the pressurep and the thermal energy,
the pressure can be split as

p = p〈u0〉+ + p〈u0〉−.

Now let us consider the energy transport. The energy transport in the positivex-direction
is ∫ ∞

0

1

2
u3g du= 1

2
〈u3〉+

=
(

1

2
ρU2+ ρe

)
〈u1〉+ + 1

2
U p〈u0〉+ + 1

2
p〈u1〉+

= ρε〈u1〉+ + 1

2
U p〈u0〉+ + 1

2
p〈u1〉+,

whereρε= 1
2ρU2+ ρe is the total energy density for the specific distributiong. Similarly,
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the corresponding flux in the negativex-direction is∫ 0

−∞

1

2
u3g du= 1

2
〈u3〉−

=
(

1

2
ρU2+ ρe

)
〈u1〉− + 1

2
U p〈u0〉− + 1

2
p〈u1〉−

= ρε〈u1〉− + 1

2
U p〈u0〉− + 1

2
p〈u1〉−.

Since the total energy flux in thex-direction is∫ ∞
−∞

1

2
u3g du=

(
1

2
ρU2+ ρe

)
U + pU

= ρεU + pU,

from the above three equations, we conclude that the total energy transportρεU can be
split as

ρεU = (ρεU )+ + (ρεU )−

= ρε〈u1〉+ + ρε〈u1〉−.

HenceρεU is composed of a kinetic energy transport splitting

1

2
ρU3 =

(
1

2
ρU3

)+
+
(

1

2
ρU3

)−
= 1

2
ρU2〈u1〉+ + 1

2
ρU2〈u1〉−

and a thermal energy transport splitting

ρeU = ρe〈u1〉+ + ρe〈u1〉−.
At the same time, the splitting of the work done by the pressure termpU becomes

pU = (pU)+ + (pU)−

= 1

2
(U p〈u0〉+ + p〈u1〉+)+ 1

2
(U p〈u0〉− + p〈u1〉−).

Note that the above splitting formula can be generalized to a hyperbolic system with a
complicated total energy density.

As a special application of the above splitting principle, let us split the 1D Euler fluxes.
The flux function for the 1D Euler equations can be separated into ρU

ρU2+ p

ρεU + pU

 = F+f + F−f ,

where f means free transport. The positive fluxF+f is

F+f = 〈u1〉+
 ρ

ρU
ρε

+
 0

p〈u0〉+
1
2 p〈u1〉+ + 1

2 pU〈u0〉+

 ,
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and the negative partF−f is

F−f = 〈u1〉−
 ρ

ρU
ρε

+
 0

p〈u0〉−
1
2 p〈u1〉− + 1

2 pU〈u0〉−

 .
With the above formulas, the flux across a cell interfacej + 1

2 for the Euler equations can
be written as

F f
j+1/2 = F+j, f + F−j+1, f .

This is exactly the KFVS scheme for the Euler equations [4, 17, 22], and the positivity and
entropy condition for the above scheme have been analyzed by many authors; see [16, 19,
29] and references therein.

As analyzed in [32], all FVS schemes based on positive (negative) particle velocities
suffer from the same weakness. The particle free transport across cell interfaces unavoidably
introduces large numerical dissipation, and the viscosity and heat conduction coefficients
are proportional to the CFL time step. In order to reduce the overdiffusivity in the FVS
schemes, particle collisions have to be added in the transport process. On the other hand,
the particle collisions can be used to simulate the physical diffusion in regions where the
dissipative structure can be well resolved.

As a simple particle collisional model, we can imagine that the particles from the left-
and right-hand sides of a cell interface collapse totally to form an equilibrium state. In
order to define the equilibrium state at the cell interface, we need first to determine the
corresponding macroscopic quantitiesq̄ j+1/2 there. They are the total mass, momentum,
and energy densities of the collapsed left and right moving beams. For example, for the
Euler equations, we have

q̄ j+1/2 =

 ρ̄

ρ̄Ū

ρ̄ε̄


j+1/2

=

 ρ

ρU
ρε


+

j

+

 ρ

ρU
ρε


−

j+1

=


ρ〈u0〉+
ρ〈u1〉+(

ρε − 1
2ρU2

) 〈u0〉+ + 1
2ρU 〈u1〉+


j

+


ρ〈u0〉−
ρ〈u1〉−(

ρε − 1
2ρU2

) 〈u0〉− + 1
2ρU 〈u1〉−


j+1

,

where(ρε− 1
2ρU2) is the thermal energy densityρe. Then, from the “averaged” macro-

scopic flow quantities in the above equation, we can construct the corresponding equilibrium
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flux function

Fe
j+1/2 =


ρ̄Ū

ρ̄Ū2+ p̄

(ρ̄ε̄ + p̄)Ū


j+1/2

.

The final flux with the inclusion of both free transport (nonequilibrium) and collision
(equilibrium) terms is

Fj+1/2 = ηF f
j+1/2+ (1− η)Fe

j+1/2,

whereη is a justifiable parameter. The scheme with a fixedη∈ [0, 1] is called the partial
thermalized transport method, which is exactly the first-order BGK scheme [32]. With the
inclusion of the equilibrium flux function, the dissipation in the KFVS scheme is reduced
substantially. In contrast to Roe’s approximate Riemann solver for the Euler equations [24],
the above BGK method strives to require even less information to form a flux function.
As a result, the above scheme is very efficient. The construction of theq̄j+1/2 term at the
cell interface has similar physical spirit as the evaluation of the Mach number and the flow
velocity at the cell interfaces in the AUSM- and CUSP-type schemes [11, 15, 26]. In the
next section, we extend the above method to the MHD equations.

2.2. Flux Splitting Method for MHD Equations

For MHD equations, we can use the same technique in the previous section to split the
flux directly. The splitting of fluxes is closely related to the definition of〈u0〉 and 〈u1〉
terms, which are functions of thex-direction velocityU and the “temperature”λ. For
MHD equations, both gas and magnetic fields contribute to the total pressurep∗. With the
definition of normal pressure from the distribution functiong,

p =
∫ ∞
−∞
(u−U )2g du= ρ

2λ
,

the total pressure (gas+magnetic) in the MHD equations uniquely determines the value
of λ,

λ = ρ

2p∗
= ρ

2p+ (B2
x + B2

y + B2
z

) ,
wherep is the gas pressure. The velocityU in g can be the same as the macroscopic fluid
velocity in thex-direction.

After determiningλ andU , we can calculate the moments of〈u0〉 and〈u1〉, and we are
ready to split the MHD flux function,

F =



ρU

ρU2+ p0

ρU V − Bx By

ρU W − Bx Bz

ByU − BxV

BzU − BxW

ρεU + p0U − Bx(ByV + BzW)


= F+f + F−f ,
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wherep0= p∗ − B2
x . The positive fluxF+f is

F+f = 〈u1〉+



ρ

ρU

ρV

ρW

By

Bz

ρε


+



0

p0〈u0〉+
−Bx By〈u0〉+
−Bx Bz〈u0〉+
−BxV〈u0〉+
−BxW〈u0〉+

1
2

(
p0U 〈u0〉+ + p0〈u1〉+

)− Bx(ByV + BzW)〈u0〉+


.

Similarly, the negative flux is

F−f = 〈u1〉−



ρ

ρU

ρV

ρW

By

Bz

ρε


+



0

p0〈u0〉−
−Bx By〈u0〉−
−Bx Bz〈u0〉−
−BxV〈u0〉−
−BxW〈u0〉−

1
2

(
p0U 〈u0〉− + p0〈u1〉−

)− Bx(ByV + BzW)〈u0〉−


.

When we combine the above splitting fluxes, the free transport flux for the MHD equations
at a cell interface becomes

F f
j+1/2 = F+j, f + F−j+1, f .

This formulation is exactly the one given by Croisilleet al. [5]. Numerically, the above
flux function is very reliable and robust [13], and the scheme performs well for problems
where the Roe scheme fails, such as in the cases of the odd–even decoupling and carbuncle
phenomena [8, 13, 23]. However, the accuracy of the above scheme is noticeably worse,
especially around contact and tangential discontinuities in MHD applications.

Now let us construct the corresponding equilibrium flux for the MHD equations. The
corresponding macroscopic variables of an equilibrium state at a cell interface are

q̄j+1/2 =



ρ̄

ρ̄Ū

ρ̄V̄

ρ̄W̄

B̄y

B̄z

ρ̄ε̄


j+1/2

= q+j + q−j+1, (2.3)
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where

q+j =



ρ〈u0〉+
ρ〈u1〉+
ρV〈u0〉+
ρW〈u0〉+
By〈u0〉+
Bz〈u0〉+(

ρε − 1
2ρU2

)〈u0〉+ + 1
2ρU 〈u1〉+


j

,

and

q̄ j+1 =



ρ〈u0〉−
ρ〈u1〉−
ρV〈u0〉−
ρW〈u0〉−
By〈u0〉−
Bz〈u0〉−(

ρε − 1
2ρU2

)〈u0〉− + 1
2ρU 〈u1〉−


j+1

.

With the above averaged macroscopic variablesq̄j+1/2, the equilibrium flux can be con-
structed as

Fe
j+1/2 = F(q̄j+1/2) =



ρ̄Ū

ρ̄Ū2+ p̄∗ − B̄2
x

ρ̄Ū V̄ − B̄x B̄y

ρ̄Ū W̄ − B̄x B̄z

B̄yŪ − B̄xV̄

B̄zŪ − B̄xW̄

(ρ̄ε̄ + p̄∗)Ū − B̄x(B̄xŪ + B̄yV̄ + B̄zW̄)


j+1/2

,

whereB̄x = Bx is a constant in the 1D case and

p̄∗ = (γ − 1)

(
ρ̄ε̄ − 1

2
ρ̄(Ū2+ V̄2+ W̄2)− 1

2

(
B̄2

x + B̄2
y + B̄2

z

))+ 1

2

(
B̄2

x + B̄2
y + B̄2

z

)
.

The final flux function across a cell interface is a combination of nonequilibrium and
equilibrium flux functions

Fj+1/2 = ηF f
j+1/2+ (1− η)Fe

j+1/2, (2.4)

whereη is an adaptive parameter. The program from the left and right statesqj andqj+1

to the final flux functionFj+1/2 is given in the Appendix. By removing the contribution
from the magnetic field, the above MHD flux function reduces exactly to the BGK flux
constructed for the Euler equations in the previous section.
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In the current study, we are more interested in the construction of a flux function for
the MHD equations. For the first-order scheme,η can be fixed, at, say, 0.7 or 0.5, in
the numerical calculations. Theoretically, the parameterη should depend on the real flow
situations: in equilibrium and smooth flow regions, the use ofη∼ 0 is physically reasonable,
and in regions with discontinuities,η should be close to 1 in order to have enough numerical
dissipation to recover the smooth shock transition. A possible choice for the construction of
η is to design a pressure-based stencil, such as the pressure switch function in the Jameson–
Schmidt–Turkel scheme [10]. In a high-order BGK scheme for the Euler and Navier–Stokes
equations [32], the time-dependent flux function can be obtained by following the BGK
solution, and the relation between the collision timeτ and viscosity coefficient is well
established. On the contrary, for the MHD equations we only split the macroscopic flux
function without knowing the explicit microscopic transport equation for the fluid and
magnetic field. However, we can still follow the MUSCL-type approach to extend the
current scheme to high order [30]. For example, we can get the left and right states at a cell
interface through the nonlinear reconstruction of the initial data, and then evaluate the flux
according to the formulation given by Eq. (2.4). A high-order Runge–Kutta time stepping
scheme is also recommended.

3. A NUMERICAL EXPERIMENT

For any upwinding scheme, the construction of the flux function, or the first-order scheme,
is very important in the understanding of the scheme. For high-order extensions, many fac-
tors, such as the nonlinear limiter, the reconstruction of conservative or primitive variables,
and time stepping methods, can affect the performance of the scheme. In the following, we
apply the current method to the Brio–Wu 1D MHD test case [3], where the results with
fixedη= 0.5 will be presented.

The initial condition of the Brio–Wu case is

ρl = 1.0, Ul = 0, pl = 1, Bx,l = 0.75, By,l = 1

on the left and

ρr = 0.125, Ul = 0, pr = 0.1, Bx,r = 0.75, By,r = −1

on the right. The gas constantγ is equal to 2. Note that the gas-kinetic flux splitting formula
presented in the last section can be applied for any reasonableγ .

In order to evaluate the performance of the current method, we compare its numerical re-
sults with those from the Roe-type MHD Riemann solver [3, 21]. The Roe-type MHD solver
is considered the most accurate MHD solver existing so far [13], although the robustness
of the scheme is questionable in some special applications.

There are 400 grid points used from [−1, 1] in thex-direction. The time step is based
on1t/1x= 0.2, which is equivalent to CFL number 0.8 in this case. The results of the
first-order scheme at 200 time steps are displayed in Figs. 1–5. The results from the first-
order Roe scheme [3, 21], with identical initial condition and time step, are also plotted in
these figures. In most regions, the kinetic and Roe-type MHD solvers give almost identical
results, except the nonconservative quantities at the fast right moving rarefaction wave.

Due to the nonconvexity of the MHD equations, compound waves, which directly connect
shock and rarefaction waves, may be present. In Table 1, we list the data at the peak point of
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TABLE 1

Flow Variables at the Peak Point of Compound Wave

Scheme ρ U -velocity V-velocity By Gas pressurep

Theory [3] 0.7935 0.4983 −1.290 −0.3073 0.6687
Kinetic 0.8179 0.4679 −1.083 −0.1239 0.7300
Roe 0.8257 0.4623 −0.928 0.0163 0.7400

FIG. 1. Density distributions with 400 grid points. Solid line: first-order BGK-type scheme. Dash/dot line:
first-order Roe-MHD solver.

FIG. 2. x-component velocity distributions with 400 grid points. Solid line: first-order BGK-type scheme.
Dash/dot line: first-order Roe-MHD solver.



FIG. 3. y-component velocity distributions with 400 grid points. Solid line: first-order BGK-type scheme.
Dash/dot line: first-order Roe-MHD solver.

FIG. 4. By distributions with 400 grid points. Solid line: first-order BGK-type scheme. Dash/dot line: first-
order Roe-MHD solver.

FIG. 5. Gas pressurep distributions with 400 grid points. Solid line: first-order BGK-type scheme. Dash/dot
line: first-order Roe-MHD solver.

347
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FIG. 6. Density profiles around right moving shock and middle contact discontinuity using three first-order
schemes. (+) Current kinetic method withη= 0.5.( g)Roe-type MHD solver. (∗) KFVS MHD solver of Croisille
et al. (corresponding toη= 1.0 in the current scheme).

the compound wave in the Brio–Wu test case. Both results are compared with the theoretical
prediction in [3]. Figure 6 gives a close look at the density distributions around the right
moving shock and the middle contact discontinuity wave. Three schemes used here are the
current one withη= 0.5, the KFVS MHD solver of Croisilleet al., and the Roe-type MHD
solver. The diffusivity of the KFVS MHD solver can clearly be observed.

In order to reduce the numerical dissipation,a MUSCL-type technique can be used to
extend the current scheme to second-order accuracy [30]. For the same initial condition, we
now use the van Leer limiter to construct two constant states around a cell interface,

ql
j+1/2 and qr

j+1/2,

FIG. 7. Density distributions with 400 grid points. Solid line: second-order BGK-type scheme (Eq. (3.5)).
Dash/dot line: first-order BGK-type scheme (Eq. (2.4)).
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and use the same procedure presented in this paper to evaluate the numerical fluxes. The
flow variables inside each cell is simply updated by the one-step Euler method,

qn+1
j = qn

j +
1t

1x

(
Fj−1/2

(
ql

j−1/2,q
r
j−1/2

)− Fj+1/2
(
ql

j+1/2,q
r
j+1/2

))
. (3.5)

The density distribution is shown in Fig. 7, from which we can clearly observe that the
second-order interpolation resolves the flow sctructures better, especially for the contact
discontinuity wave. At the same time, the smoothness of the solution is reduced.

4. DISCUSSION AND CONCLUSION

In this paper, we have constructed the kinetic flux splitting formula for the MHD equa-
tions based on the gas-kinetic theory. We feel that there are many applications of the splitting
techniques presented in this paper. Also, the kinetic flux splitting formulation has similari-
ties with the AUSM- and CUSP-type schemes [11, 15], where the advection and pressure
terms are split differently. Numerical results validate the accuracy of the current approach.

In terms of the current gas-kinetic MHD solver, we have the following remarks:

(1) To get a truly multidimensional MHD solver is a formidable work. A direct way to
extend the current method to the multidimensional case is to use the dimensional splitting
technique, where the flow equations in thex-, y-, andz-directions are solved subsequently.
If there is a jump of magnetic field in the normal direction, such asBx in the x-direction
across a cell interface, the weakly nonconservative form [21]

∂Bx

∂t
+U

∂Bx

∂x
= 0

can be split by changingU in the above equation tōU of Eq. (2.3). Also, in order to satisfy
∇ · B= 0 condition, the projection method can be used to clean up the nonzero divergence
of the magnetic field [2].

(2) The current scheme is very efficient in comparison with the Roe-type Riemann
MHD solver. For example, for 1D calculations, the flux evaluation takes about one-third the
amount of CPU time as the Roe-type scheme. For 3D calculations, the saving of computa-
tional time is enormous. Since we do not use characteristic information of the MHD system,
the numerical problems related to nonconvexity, nonstrict hyperbolicity, and linearization
are avoided. Also, the Boltzmann-type scheme is very robust, especially for high-speed,
low-density regions [13]. The main reason for this is that the splitting is based on〈un〉+
and〈un〉−, which accounts for all particle velocities, instead of switching the flux function
according to the Mach numberM > 1 or M < 1 in many other splitting schemes.

(3) The extension of the current method to the system with a general equation of
statep= p(ρ, e) is straightforward. The important point is to distinguish the differences
between the splitting of internal energy fluxρeU and the work done by the pressurepU.
No singularity and ambiguity in characteristic decomposition of the MHD equations will
be encountered in the gas-kinetic splitting formulation.

There are still many open questions related to the current gas-kinetic approach. First,
underlying the macroscopic flux splitting, we do not know the exact microscopic equilibrium
state for the whole flow system including the gas and magnetic field. Second, different from
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the BGK scheme for the Euler and Navier–Stokes equations [32], there is no direct way to
extend the current method to solve dissipative (including resistivity and dispersive effects)
MHD equations due to the lack of microscopic transport equations, although the dissipative
terms can be regarded as additional source terms to the current ideal MHD equations. Third,
in plasma calculations, the particle method is usually used [7]. How to make the smooth
transition from the microscopic particle method to the macroscopic MHD Riemann solver
through the gas-kinetic scheme is an important and interesting research topics. Even with
many unknowns, the potential advantage of the kinetic approach over the Riemann solver
in the construction of the numerical flux function becomes clear when solving increasingly
more complicated hyperbolic systems.

APPENDIX: EVALUATION OF KINETIC MHD FLUX FUNCTION
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