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A gas-kinetic flux splitting method is developed for the ideal magnetohydrody-
namics (MHD) equations. The new scheme is based on the direct splitting of the
flux function of the MHD equations with the inclusion of “particle” collisions in the
transport process. Consequently, the artificial dissipation in the new scheme is greatly
reduced in comparison with the MHD flux vector splitting method. Numerical results
from the current scheme are favorable compared with those from the well-developed
Roe-type MHD solver. In the current paper, the general principle of splitting the
macroscopic flux function based on the gas-kinetic theory is presented. The flux
construction strategy may shed some light on the possible construction of accurate
and robust hybrid schemes for the compressible flow simulatiogg999 Academic Press

Key Words'magnetohydrodynamics; flux splitting; gas-kinetic scheme.

1. INTRODUCTION

The development of numerical methods for the magnetohydrodynamics (MHD) ec
tions has attracted much attention in recent years. Godunov-type schemes are cons
particularly useful here. On the basis of Roe’s method [24], Brio and Wu developed the
flux difference splitting (FDS) scheme for MHD equations [3]. Aslan also followed the id
of fluctuation approach to construct a second-order upwind MHD solver [1]. Zaehaty
applied an operator splitting technique and devised a high-order Godunov-type me
[35]. During the same period, multidimensional extension of MHD solvers was done
Ryu et al. [25] and Tanaka [28]. On the basis of the nonlinear Riemann solver, Dai &
Woodward extended the PPM method there [6]. PoweHl. constructed an eight-wave
family eigensystem for the approximate Riemann solver [20, 21]. Most recently, base
the Lax—Friedrichs flux splitting technique, Jiang and Wu applied a high-order WENO int
polation scheme to the MHD equations [12]. In order to increase the robustness and simm
the complicated Roe-type MHD solver, Linde developed an adequate Riemann solver b
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on the HLL method for heliosphere applications [13]. A majority of the methods mentior
above applied characteristic decomposition for the MHD waves, where the entropy, s
Alfven, and fast waves have to be considered in the evaluation of a single flux function.
cause of the wave decomposition procedure, considerable work is required to evaluat
justify the MHD eigensystem, where the nonstrict hyperbolicity causes additional diffict
[18]. For the same reason, issues related to the direct extension of the flux vector spl
(FVS) scheme to MHD equations have not been fully addressed. The search for robust,
rate, and efficient MHD flow solvers is still one of the primary directions in MHD researc

For the Euler and Navier—Stokes equations, the development of gas-kinetic scheme
also attracted attention [32]. A particular strength of kinetic schemes lies precisely wi
Godunov-type FDS schemes often fail, such as with carbuncle phenomena, positivity.
entropy conditions [8, 14, 23, 33]. However, like any other FVS method, the kinetic fl
vector splitting (KFVS) scheme is very diffusive and less accurate in comparison with
Roe-type Riemann solver, especially for shear and contact waves. The diffusivity of the |
schemes, such as Steger—Warming, van Leer, and the KFVS [22, 27, 31] is mainly di
the particle or wave free transport mechanism, which automatically sets the CFL time
equal to particle collision time. Consequently, the artificial viscosity coefficient is alwe
proportional to the time step. Even though numerically the high-order FVS methods
obtain crisp shock resolution by using a MUSCL-type reconstruction method, physic
it is impossible to develop a second-order FVS scheme for the inviscid Euler equat
without correcting the free transport mechanism. In order to reduce the diffusivity, part
collisions have to be modeled and implemented in the gas evolution stage, such as tl
the BGK scheme [34].

The construction of a gas-kinetic FVS scheme for the MHD equations began v
Croisille et al. [5], where a MHD KFVS solver was obtained by simply extending th
KFVS flux function of the Euler equations. The above MHD KFVS scheme is very rob
and reliable, but overdiffusive, especially in the contact discontinuity regions [13]. F
cently, another interesting gas-kinetic MHD solver has been developed by Huba and |
[9]. Different from the earlier approach, with this solver Huba and Lyon constructed t
equilibrium states and a transport equation to recover the MHD equations. An impor
aspect of this method is that it provides a framework in which to incorporate additio
terms into the MHD equations, e.g., anisotropic ion stress tensor and anisotropic tem
ture distribution. However, the physical basis of the transport equation and the reliabilit
the equilibrium states need to be further investigated. Since Huba and Lyon’s flux func
retains the FVS nature, large numerical dissipation is expected.

In this paper, we construct a new kinetic flux splitting method for MHD equations. Ba:
on the BGK-type formulation, the KFVS MHD solver of Croisié¢al.is generalized by in-
cluding particle collisions. As a result, the new scheme reduces numerical dissipation si
icantly and gives a more accurate representation of wave interactions. In Section 3, itw
seenthatthe new scheme compares well with the Roe-type MHD solver[3, 21]. The flux
struction method presented in this paper splits the macroscopic flux function directly; th
fore, itis very useful in the design of numerical methods for complicated hyperbolic syste

2. GAS-KINETIC APPROACH TO MHD EQUATIONS

In the one-dimensional case, the MHD equation
G+ F@x=0
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has the form [3]

pr+ (pU)x =0,
(pU) + (pU%+ p. — BE), =0,
(pV)t + (PUV — BxBy)x =0,
(W)t + (pUW — BxB,)x = 0, (2.1)
(By)t + (ByU — BxV)x =0,
(Bt + (BU — ByW), =0,
(0€)t + ((p€ + PIU — B(BU + B,V + B,W)x = 0,

wherep, is the total pressure

and p is the gas pressure. The total energy density includes kinetic, thermal, and mag
energy densities,

1 1
pe = Ep(u2 +V24+W?) 4 pe+ E(BXZ + B + BY).
For anideal gas in equilibrium, the thermal energy is related to pressure through the rel

pe=p/(y — 1.

Due to different physical origins, it should be emphasized that in order to properly s
the energy flux function, the splitting of internal energy flueU and the splitting of work
done by the pressungU should be different, although they are only different by a consta
1/(y — 1) for the ideal gas.

Theoretically, it is very difficult to construct an equilibrium state and a single kine
transport equation to exactly recover the above ideal MHD equations. Basically, Farac
law for the time evolution of magnetic field comes from the Maxwell equations and thi
is no corresponding “particle” picture in representing the field evolution. However, inste
of constructing the equilibrium distribution for the flow and magnetic field, we can split t
MHD flux function directly on the macroscopic level using gas-kinetic theory.

2.1. Gas-Kinetic Flux Splitting Method

In gas-kinetic theory, the flux is associated with the particle motion across a cell interf:
For a 1D flow in thex-direction, the particle motion in this direction determines the flu
function. Other quantities, such as thalirection velocity, thermal energy, and magnetic
field, can be considered as passive scalars which are transported waittitketion particle
velocity. Normally, particles are randomly distributed around the average velocity. Fr
statistical mechanics, the moving particles inxhdirection can be most favorably describec
by the Maxwell-Boltzmann distribution function,

2\ 12
g:p<> g Mu-U?, (2.2)
T
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whereU is the average velocity and is the normalization factor of the distribution of
random velocity. Note that is related to the temperature of the gas flow, ke m/2kT,
wherem is the molecular masg;is the Boltzmann constant, afdis the temperature.

The transport of any flow quantity is basically due to the movement of particles. With
above equilibrium statg, we can split the particles into two groups. One group is movir
to the right withu > 0, and the other group is moving to the left with 0. Before splitting
the fluxes, let us first define the moments of the particle distribution function,

n n A 12 —1(u—U)2
uh = fu" — e du,
b

where the integration limit of the particle velocity can be(—oo, +00), (—o0, 0), or
(0, +00). There is a recursive relation for the momeqt%), which is

n+1

un+2 U un+1
(u™) (U™ + 7

(um.

In order to simplify the presentation, we define the notations

00 1/2
(++4) = / (-9 ()L> ef)u(u7U)2du7
—00 b4
00 1/2
() = / (-9 (A> ef)»(u7U)2du’
0 T

and

For example, we have

o, = %erfc(—ﬁU); woy_ = %erfc(«/xU),

where erfc is the complementary error function, and

<u1> —U <u0> + }LMJZ <u1> —-U <u0> }LMJZ
T 2 mn T T 2mn
Obviously, if the integration limit i§—oo, c0), the following relations hold:
wy=1 (@WH=uU

Depending on the particle moving direction, the total densitan be split into

p+=/ gdu
0

= p(u),
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and
0
o~ =/ gdu
= p(u%)_.

Any macroscopic quantity without containing explicitly thex-component velocityJ,
such as the density, y-, and z-direction momentunpV and pW, and magnetic field
Bx By, can be split similarly:

Zt=27Zuo,
and
Z-=27Zu%_.

The above relations mean that the quanfitis simply advected with the particle transpor
in the x-direction.
The x-direction momentunpU can be split into

(PU)T = / ugdu
0

= p(uh),

and

0
(pU)™ = / ugdu

—0Q

= p(ut)_.

Similarly, any quantity containing thed term, such a,U, B,U, pU, pVU, andpWU,
can be split as

(ZU)* = Z(uh),
and

(ZU)™ = Z(uh)_.

For the magnetic field, the above splitting implies that the field is frozen into the parti
motion and transported with the fluid. Note tiZt does not includgU, and the splitting
of pU will be derived later.

The energy can be split into two terryse)™ and(pe)~, where

(pe)*=/ }Uzgdu
b 2
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wherepe is the thermal energy of the specific distribution functgpim Eq. (2.2) with the
value ofp/4x. Similarly, we have

(pe)~

I
—
8 o
N

[

N
«
o
c

1 P 0
pU(u ),+4/\(u y_

NI NI Nl

pU uh)_ + peu)_.

The above equations imply that the kinetic enegqyjdz can be split as

1 2 _ 1 2 i 1 2 -

1 1
= EPU (uhy, + QPU (uh_,

and the thermal energy can also be split as

pe=(pe)* + (pe)~
= pe(u®), + pe(u’)_.
In addition to the thermal energy, we can also use the above formulation to split the c
quantities without an explicit macroscopic velocity dependence, such as magnetic er
in the MHD equations. For nonideal gases, the internal energy could be a complic
function of p and T. The above formulation can still be used to split it in termsu

and(u®)_. For example, due to the relation between the pressared the thermal energy,
the pressure can be split as

p=pud); + pu)_.

Now let us consider the energy transport. The energy transport in the pasdivection
is

0 1 5 _1 5
/O 2ugdu_2<u Y
1 - 1 1 0 1 1
= E'OU + pe | {u )++§UP<U )++§p(u )+
1 1 0 1 4
= pe(u7); + EUP(U )+ + EP(U )45

wherepe = %pU 2 1 peis the total energy density for the specific distribut@rBimilarly,
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the corresponding flux in the negatixedirection is

0
13 _ 1.3
[mzu gdu_z(u),

= (ZpU+ pe) (b + Up®) + > pu)
2 T2 T2 -
1 1
= pe(ul)_ + SUpPU®)- + Sput)_.
2 2
Since the total energy flux in thedirection is
*1 1
/ “udgdu= | ZpU? + pe |U + pU
o 2 2
= peU + pU,

from the above three equations, we conclude that the total energy trapghbitan be
split as

peU = (peU)™ + (peU)™
= pe(ulyy + pe(ul)_.

HencepeU is composed of a kinetic energy transport splitting

1 1 + 1 -
ZpUd=(ZpuUs ZpUd
0= () +(3v)

and a thermal energy transport splitting
peU = pe(u), + pe(u’)_.
At the same time, the splitting of the work done by the pressure tddnbecomes

pU = (pU)" + (pU)~

1 1
Ewmwn+pwﬂo+§wmwx+mwpy

Note that the above splitting formula can be generalized to a hyperbolic system wi
complicated total energy density.
As a special application of the above splitting principle, let us split the 1D Euler flux
The flux function for the 1D Euler equations can be separated into
pU
pU2+p | =F{+Ff.
peU + pU

where f means free transport. The positive flEY is

0 0
Ff= b, (/OU ) + pu)+ )

pre Zp(ulyy 4+ 3puUud),
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and the negative paFR; is

P 0
Fr=(uh_| oU | + p(uo)_
pe 2P(Uh)- +3pUu)_

With the above formulas, the flux across a cell interfg’aee% for the Euler equations can
be written as

Fiiye = File + Fiiap

This is exactly the KFVS scheme for the Euler equations [4, 17, 22], and the positivity
entropy condition for the above scheme have been analyzed by many authors; see [1
29] and references therein.

As analyzed in [32], all FVS schemes based on positive (negative) particle veloci
suffer from the same weakness. The particle free transport across cell interfaces unavoi
introduces large numerical dissipation, and the viscosity and heat conduction coeffic
are proportional to the CFL time step. In order to reduce the overdiffusivity in the F'
schemes, particle collisions have to be added in the transport process. On the other
the particle collisions can be used to simulate the physical diffusion in regions where
dissipative structure can be well resolved.

As a simple particle collisional model, we can imagine that the particles from the Ie
and right-hand sides of a cell interface collapse totally to form an equilibrium state.
order to define the equilibrium state at the cell interface, we need first to determine
corresponding macroscopic quantit@s, ; , there. They are the total mass, momentun
and energy densities of the collapsed left and right moving beams. For example, fol
Euler equations, we have

P}
dj+12 = | pU
PE€ /112

+ —

p p

=1 pU + | pU
Pe/; PE€ Jin
(o),
= (uh),

(pe — 3pU?) (UO)_ + 3pU (ut)_

where(pe — %,oUZ) is the thermal energy densipe. Then, from the “averaged” macro-
scopic flow quantities in the above equation, we can construct the corresponding equilib
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flux function
oU
Fje+1/2 = ,O_U_z +p
Pe+PY /L,
The final flux with the inclusion of both free transport (nonequilibrium) and collisic
(equilibrium) terms is

f
Fj+1/2 = 77Fj+1/2 +@Q-9n Fje+1/2,

wheren is a justifiable parameter. The scheme with a fixed[0, 1] is called the partial
thermalized transport method, which is exactly the first-order BGK scheme [32]. With
inclusion of the equilibrium flux function, the dissipation in the KFVS scheme is reduc
substantially. In contrast to Roe’s approximate Riemann solver for the Euler equations |
the above BGK method strives to require even less information to form a flux functi
As a result, the above scheme is very efficient. The construction afjthe, term at the
cell interface has similar physical spirit as the evaluation of the Mach number and the
velocity at the cell interfaces in the AUSM- and CUSP-type schemes [11, 15, 26]. In
next section, we extend the above method to the MHD equations.

2.2. Flux Splitting Method for MHD Equations

For MHD equations, we can use the same technique in the previous section to spli
flux directly. The splitting of fluxes is closely related to the definition(of) and (u?)
terms, which are functions of the-direction velocityU and the “temperatureX. For
MHD equations, both gas and magnetic fields contribute to the total pregsunéth the
definition of normal pressure from the distribution functipn

* P

= u—U)lgdu= —,

p /ﬂf )9 o

the total pressure (gasmagnetic) in the MHD equations uniquely determines the valt
of A,

_ P _ p
2p.  2p+(BZ+BZ+B2)

wherep is the gas pressure. The velodityin g can be the same as the macroscopic flui
velocity in thex-direction.

After determiningh. andU, we can calculate the moments(of) and(u'), and we are
ready to split the MHD flux function,

pU
pPUZ + po
pUV — BB,
F= pUW — B,B, =F{ +Fr.
B,U — B,V
B,U — ByW
peU + poU — B, (B,V + B,W)
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wherepg = p, — B2. The positive fluxF is

p 0
pU po(u®) .+
pV —BxBy (U0
Fr=uh | oW | + —BxB,(u%)
B, — BV (U0,
B, —BW (%),
pe 2 (PoU (U0)4 + pofut)+) — Bx(ByV + B,W)(u%),

Similarly, the negative flux is

o 0
pU po(u®)
oV —By By (u%)_
Fr=uh_| pWw | + — BB, (u°)_
By —ByV (U0 _
B, —B,W(u%
pe 2(PoU(U®)— + pofuh)-) — Bx(ByV + B,W)(u°)—

When we combine the above splitting fluxes, the free transport flux for the MHD equati
at a cell interface becomes

f _
Fiiz = F't + Fiivs

This formulation is exactly the one given by Croisite al. [5]. Numerically, the above
flux function is very reliable and robust [13], and the scheme performs well for proble
where the Roe scheme fails, such as in the cases of the odd—even decoupling and car
phenomena [8, 13, 23]. However, the accuracy of the above scheme is noticeably w
especially around contact and tangential discontinuities in MHD applications.

Now let us construct the corresponding equilibrium flux for the MHD equations. T
corresponding macroscopic variables of an equilibrium state at a cell interface are

DD
|I Cllbl

Qj+1/2 = ,o_i/T/ =q/ +0a1, (2.3)

PE€ Jit12
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where

and

p(ut)_
pV (u°)_
Qj+1 = PW(u®)_
By (U%)_
B, (u°)_
(pe — 2pU2) (U0 _ + 2pU (ul)_

j+1

With the above averaged macroscopic varialgjgs >, the equilibrium flux can be con-
structed as

Foip=F@12) = pUW — B«B, ,

j+1/2

whereBy = By is a constant in the 1D case and

_ 1 — = = 1= = =\ 1 = =
p,=(y — l)(pé - Ep(U2+v2+W2) - E(Bi + B+ Bﬁ)) + E(B§ + B + B?).
The final flux function across a cell interface is a combination of nonequilibrium a
equilibrium flux functions

f
Fit12 = 77Fj+1/2 +@Q-n Fje+1/29 (2.4)

wheren is an adaptive parameter. The program from the left and right sjatesdq; 1

to the final flux functionF; 1, is given in the Appendix. By removing the contribution
from the magnetic field, the above MHD flux function reduces exactly to the BGK fl
constructed for the Euler equations in the previous section.
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In the current study, we are more interested in the construction of a flux function
the MHD equations. For the first-order schemecan be fixed, at, say, 0.7 or 0.5, in
the numerical calculations. Theoretically, the paramgtsiould depend on the real flow
situations: in equilibrium and smooth flow regions, the usg-of0 is physically reasonable,
and in regions with discontinuities should be close to 1 in order to have enough numeric
dissipation to recover the smooth shock transition. A possible choice for the constructic
n is to design a pressure-based stencil, such as the pressure switch function in the Jar
Schmidt—Turkel scheme [10]. In a high-order BGK scheme for the Euler and Navier—Stc
equations [32], the time-dependent flux function can be obtained by following the B!
solution, and the relation between the collision timend viscosity coefficient is well
established. On the contrary, for the MHD equations we only split the macroscopic
function without knowing the explicit microscopic transport equation for the fluid al
magnetic field. However, we can still follow the MUSCL-type approach to extend t
current scheme to high order [30]. For example, we can get the left and right states at :
interface through the nonlinear reconstruction of the initial data, and then evaluate the
according to the formulation given by Eq. (2.4). A high-order Runge—Kutta time stepp
scheme is also recommended.

3. ANUMERICAL EXPERIMENT

For any upwinding scheme, the construction of the flux function, or the first-order sche
is very important in the understanding of the scheme. For high-order extensions, man
tors, such as the nonlinear limiter, the reconstruction of conservative or primitive variak
and time stepping methods, can affect the performance of the scheme. In the followinc
apply the current method to the Brio—-Wu 1D MHD test case [3], where the results v
fixed n = 0.5 will be presented.

The initial condition of the Brio—Wu case is

p=10, U=0  p=1 B =075 By =1
on the left and
or =0125 U =0, pr=01 - Byxr=075  By=-1

on the right. The gas constgnis equal to 2. Note that the gas-kinetic flux splitting formulz
presented in the last section can be applied for any reasopable

In order to evaluate the performance of the current method, we compare its numeric:
sults with those from the Roe-type MHD Riemann solver [3, 21]. The Roe-type MHD sol
is considered the most accurate MHD solver existing so far [13], although the robust
of the scheme is questionable in some special applications.

There are 400 grid points used from1, 1] in thex-direction. The time step is based
on At/Ax=0.2, which is equivalent to CFL number 0.8 in this case. The results of t
first-order scheme at 200 time steps are displayed in Figs. 1-5. The results from the
order Roe scheme [3, 21], with identical initial condition and time step, are also plotte
these figures. In most regions, the kinetic and Roe-type MHD solvers give almost iden
results, except the nonconservative quantities at the fast right moving rarefaction wav

Due to the nonconvexity of the MHD equations, compound waves, which directly conr
shock and rarefaction waves, may be present. In Table 1, we list the data at the peak pc
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TABLE 1
Flow Variables at the Peak Point of Compound Wave

Scheme p U-velocity V-velocity By Gas pressure
Theory [3] 0.7935 0.4983 —1.290 —0.3073 0.6687
Kinetic 0.8179 0.4679 —1.083 —0.1239 0.7300
Roe 0.8257 0.4623 —0.928 0.0163 0.7400
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FIG. 6. Density profiles around right moving shock and middle contact discontinuity using three first-or

schemes.+) Current kinetic method with = 0.5. (O) Roe-type MHD solver.{) KFVS MHD solver of Croisille
et al. (corresponding tg = 1.0 in the current scheme).

the compound wave in the Brio—Wu test case. Both results are compared with the theor:
prediction in [3]. Figure 6 gives a close look at the density distributions around the ri
moving shock and the middle contact discontinuity wave. Three schemes used here a
current one withy = 0.5, the KFVS MHD solver of Croisillet al, and the Roe-type MHD
solver. The diffusivity of the KFVS MHD solver can clearly be observed.

In order to reduce the numerical dissipation,a MUSCL-type technique can be use
extend the current scheme to second-order accuracy [30]. For the same initial conditio
now use the van Leer limiter to construct two constant states around a cell interface,
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FIG. 7. Density distributions with 400 grid points. Solid line: second-order BGK-type scheme (Eq. (3.-
Dash/dot line: first-order BGK-type scheme (Eq. (2.4)).
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and use the same procedure presented in this paper to evaluate the numerical fluxe
flow variables inside each cell is simply updated by the one-step Euler method,

n+1

At
q" =qf + H(Fi—l/z(qu—l/zv di_12) — Fj+1/2(q|j+1/2’ dit12))- (3.5)
The density distribution is shown in Fig. 7, from which we can clearly observe that
second-order interpolation resolves the flow sctructures better, especially for the co
discontinuity wave. At the same time, the smoothness of the solution is reduced.

4. DISCUSSION AND CONCLUSION

In this paper, we have constructed the kinetic flux splitting formula for the MHD equ
tions based on the gas-kinetic theory. We feel that there are many applications of the spl
techniques presented in this paper. Also, the kinetic flux splitting formulation has simil
ties with the AUSM- and CUSP-type schemes [11, 15], where the advection and pres
terms are split differently. Numerical results validate the accuracy of the current appro

In terms of the current gas-kinetic MHD solver, we have the following remarks:

(1) Togetatruly multidimensional MHD solver is a formidable work. A direct way t
extend the current method to the multidimensional case is to use the dimensional spli
technique, where the flow equations in they-, andz-directions are solved subsequently
If there is a jump of magnetic field in the normal direction, suctBasn the x-direction
across a cell interface, the weakly nonconservative form [21]

d By U 0 Bx

=0
ot * aX

can be split by changing in the above equation 10 of Eq. (2.3). Also, in order to satisfy
V - B =0 condition, the projection method can be used to clean up the nonzero diverg
of the magnetic field [2].

(2) The current scheme is very efficient in comparison with the Roe-type Riem:
MHD solver. For example, for 1D calculations, the flux evaluation takes about one-third
amount of CPU time as the Roe-type scheme. For 3D calculations, the saving of com|
tional time is enormous. Since we do not use characteristic information of the MHD syst
the numerical problems related to nonconvexity, nonstrict hyperbolicity, and linearizat
are avoided. Also, the Boltzmann-type scheme is very robust, especially for high-sp
low-density regions [13]. The main reason for this is that the splitting is bas€d"on
and(u")_, which accounts for all particle velocities, instead of switching the flux functic
according to the Mach numbéf > 1 or M < 1 in many other splitting schemes.

(3) The extension of the current method to the system with a general equatio
statep= p(p, e) is straightforward. The important point is to distinguish the difference
between the splitting of internal energy flweU and the work done by the pressys&l.
No singularity and ambiguity in characteristic decomposition of the MHD equations v
be encountered in the gas-kinetic splitting formulation.

There are still many open questions related to the current gas-kinetic approach. |
underlying the macroscopic flux splitting, we do not know the exact microscopic equilibri
state for the whole flow system including the gas and magnetic field. Second, different f
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the BGK scheme for the Euler and Navier—Stokes equations [32], there is no direct we
extend the current method to solve dissipative (including resistivity and dispersive effe
MHD equations due to the lack of microscopic transport equations, although the dissip:
terms can be regarded as additional source terms to the currentideal MHD equations.
in plasma calculations, the particle method is usually used [7]. How to make the smc
transition from the microscopic particle method to the macroscopic MHD Riemann sol
through the gas-kinetic scheme is an important and interesting research topics. Even
many unknowns, the potential advantage of the kinetic approach over the Riemann s
in the construction of the numerical flux function becomes clear when solving increasir
more complicated hyperbolic systems.

APPENDIX: EVALUATION OF KINETIC MHD FLUX FUNCTION

¢ gas constant GAM $\gamma$ and PI=3.14 $\pi$ given
¢ left state = (ADE1,AXM1,AYM1,AZM1,AEN1,ABX1,ABY1,ABZ1)
¢ which is $(\rho)_j, (\rho W_j, (\tho V)_j, (\rho W)_j,
¢ (\rho \epsilon)_j, (B_x)_j, (B_y)_j, (B_z)_j $.
¢ right state = (ADE2,AXM2,AYM2,AZM2,AEN2,ABX2,ABY2,ABZ2)
¢ which is $(\rho) _{j*+1}, (\rho W)_{j*+1}, (\rho V)_{j+1}, (\rho W)_{j+1},
c (\rho \epsilon)_{j+1}, (B_x)_{j+1}, (B_y)_{j+1}, (B_z)_{j+1} §
¢ left and right pressures
APP1=(GAM-1)*(AEN1-0.5% (AXM1**2+AYM1**2+AZM1%*2) /ADE1)
* +0.5%(2.0-GAM) * (ABX1*%2+ABY1%%x2+ABZ1%%2) | $p_j$
APP2=(GAM-1) * (AEN2-0.5% (AXM2**2+AYM2**2+AZM2**2) /ADE2)
* +0.5%(2.0-GAM) * (ABX2%*2+ABY2#*2+ABZ2%*2) I $p_{j+1}$
c left and right $\lambda$, and macroscopic velocities ($U,V,W$)
AE1=0.5*ADE1/APP1 | $\lambda_j$
AU1=AXM1/ADE1 $U_j$
AV1=AYM1/ADE1 $V_js
AW1=AZM1/ADE1 3W_j$

[

|
AE2=0.5*ADE2/APP2 | $\lambda_{j+1}$

|

|

I

AU2=AXM2/ADE2 $U_{j+1}8
AV2=AYM2/ADE2 $V_{j+1}%
AW2=AZM2/ADE2 $W_{j+1}$
¢ particle velocity moments.
TEUO=0.5+DERFC (~AU1*SQRT (AE1) ) $<u~0>_+ §
TEU1=AU1*TEUO+0.50*EXP (-AE1*AU1*AU1) /SQRT (AE1*PI) $<u~1>_+ §
TGUO=0.5*(DERFC (AU2*SQRT(AE2) )) $<u0>_~ §
TGU1=AU2+TGUO-0 . 50*EXP (~AE2*AU2%AU2) /SQRT (AE2#PI) $<u1>_- §
¢ equilibrium state at the cell interface
ADE=ADE1*TEUO+ADE2*TGUOQ $\bar \rho$
AU=(ADE1*TEU1+ADE2*TGU1) /ADE $\bar U$
AV=(ADE1*AV1*TEUO+ADE2+AV2*TGUO) /ADE $\bar V$
AW=(ADE1*AW1*TEUO+ADE2+AW2*TGUQ) /ADE $\bar W§
ABY=ABY1*TEUO+ABY2*TGUO $\bar B_y$
ABZ=ABZ1*TEUO+ABZ2*TGUO | $\bar B_z$
AE=(AEN1-0.5*ADE1*AUL%%2)xTEUO+(AEN2-0.5%ADE2%AU2%*2) *TGUQO
* +0.5*%ADE1*AU1*TEU1+0.5*ADE2*AU2*TGU1 | $\bar \lambda$
TP=(GAM~1)* (AE-0.5*ADE* (AU *2+AV**2+4AW**2) )
* +0.5%(2.0-GAM) * (ABX1#*2+ABY**2+ABZ*%2) | $\bar p$
¢ gas-kinetic flux function, ETA $\eta$ is a justifiable parameter.
FM=ETA* (TEU1*ADE1+TGU1*ADE2)+(1-ETA) *ADE*AU | $F_{\rhol}$
FU=ETA* (TEU1*AXM1+TGU1*AXM2+ (APP1-ABX1%%2) *TEUQ+ (APP2- ABX2**2) *TGUO)
* +(1-ETA) * (ADE#AU**2+TP-ABX1%%2) | $F_{\rho U}$
FV=ETA* (TEUL*AYM1+TGU1*AYM2-ABX1*ABY1TEUO-ABX2*ABY2*TGUO)
* +(1-ETA) * (ADE*AU*AV-ABX1*ABY) | $F_{\rho V}$
FW=ETA* (TEU1*AZM1+TGU1*AZM2~-ABX1*ABZ1+TEUO-ABX2*ABZ2*TGUO)
* +(1-ETA) « (ADE*AU*AW-ABX1*ABZ) | $F_{\rho W}$
FBY=ETA* (TEU1*ABY1+TGU1*ABY2-ABX1*AV1*TEUO~ABX2%AV2+TGUO)
* +(1-ETA) * (ABY*AU~ABX1#%AV) [ $F_{B_y}$
FBZ=ETA*(TEUl*ABZi+TGU1*AB22—ABX1*Aw1*TEUO—ABX2*AW2*TGUO)
* +(1-ETA) * (ABZ*AU-ABX1*AW) | $F_{B_z}$
FE=ETA* (TEU1*AEN1+TGU1*AEN2 | $F_ {\rho \epsilon}$

+0.5%(APP1-ABX14%2)*TEU1+0.5*AUL* (APP1-ABX1%%2) *TEUQ
-ABX1%(ABY1*AV1+ABZ1*AW1) *TEUO

+0.5% (APP2-ABX2#*%2) *TGU1+0. 5% AU2% (APP2-ABX2%*2) *TGUO
-ABX2* (ABY2%AV2+ABZ2*AW2) *TGUO)

+(1-ETA) * ((AE+TP) *AU-ABX 1% (ABX1*AU+ABY*AV+ABZ*AW))

* X K * ¥
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